Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 1. Earth-viewing satellite perspective

نویسندگان

  • M. Fromm
  • O. Torres
  • D. Diner
  • D. Lindsey
  • B. Vant Hull
  • R. Servranckx
  • E. P. Shettle
  • Z. Li
چکیده

[1] The pyrocumulonimbus storm near Chisholm, Alberta, on 28 May 2001 has been studied in depth. However, the impact of this eruption on the lower stratosphere has not been characterized. Here and in a companion paper we explore this topic. This paper focuses on the ‘‘young’’ Chisholm smoke plume, from the age of 3 h to 1 week, as observed by Earth-viewing satellite instruments. (The companion paper presents strictly profile data.) GOES visible and infrared image loops reveal the pyroconvective life cycle and initial transport of the smoke cloud. MISR stereographic heights are the first of their kind for a stratospheric cloud, showing smoke up to 5 km above the tropopause on 29 May. MODIS IR and visible images are analyzed to give constraints on plume height, thickness, and particle size. Infrared brightness temperature analyses reveal unique aspects of the ‘‘day-after’’ Chisholm plume. Particle sizes are 1/3 to 1/2 compared to normal cirrus crystals. The daytime 29 May plume is optically thick at tropopause temperatures yet smoky brown. A transition from deep anvil blow off to ‘‘dry’’ smoke is still occurring after 1.5 d. TOMS aerosol index is used as a proxy for areas of particularly high smoke plume altitude. The Chisholm smoke in the upper troposphere and lower stratosphere is traced with AI for 1 week as the plume blows across North America to western Europe. First estimates are made of stratospheric smoke mass in relation to emissions during pyroconvection. The 29 May stratospheric Chisholm pyroCb plume contains a mass between 1.39 10 and 1.09 10 t. This represents between 10% and 121% of total particle mass emitted from the fire on 28 May, calling into question some frequently assumed values for smoke single scatter albedo and/or emission estimates. Strictly in terms of mass, the stratospheric Chisholm plume amounted to 15% of background Northern Hemispheric stratospheric sulfate aerosol. Overall, the young pyroCb plume is seen to be a peculiar mixture of smoke aerosols and water-ice that confounds operational cloud/aerosol detection routines and exhibits extreme, and still mysterious, composition and life cycle features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long range transport and fate of a stratospheric volcanic cloud from Soufriere Hills volcano, Montserrat

Volcanic eruptions emit gases, ash particles and hydrometeors into the atmosphere, occasionally reaching heights of 20 km or more, to reside in the stratospheric overworld where they affect the radiative balance of the atmosphere and the Earth’s climate. Here we use satellite measurements and a Lagrangian particle dispersion model to determine the mass loadings, vertical penetration, horizontal...

متن کامل

Using Wind Data to Predict the Risk of Volcanic Eruption: An Example from Damavand Volcano, Iran

Damavand volcano is located 60 km to the East North- East of Tehran. It is a dormant stratovolcano outcrop in the Alborz Mountains of northern Iran and is the highest mountain (5670 m) in the Middle East and West Asia. Mazandaran Province, one of the most populous provinces by population density, Semnan and Gorgan provinces further east are neighbours of the Damavand. Volcanism in Damavand goes...

متن کامل

Daily changes in global cloud cover and Earth transits of the heliospheric current sheet

Changes in cloud cover are found to occur for periods of a few days following Earth transits of the heliospheric current sheet (HCS), provided also that the transits occur in years of high stratospheric aerosol loading. Using global cloud products from the International Satellite Cloud Climatology Project (ISCCP) D1 data series, epoch superposition analyses was made for various samples of HCS e...

متن کامل

The STRatospheric Estimation Algorithm from Mainz (STREAM): Estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution

The STRatospheric Estimation Algorithm from Mainz (STREAM) determines stratospheric columns of NO2 which are needed for the retrieval of tropospheric columns from satellite observations. It is based on the total column measurements over clean, remote regions as well as over clouded scenes where the tropospheric column is effectively shielded. The contribution of individual satellite measurement...

متن کامل

Aerosol microphysics simulations of the Mt. Pinatubo eruption with the UM-UKCA composition-climate model

We use a stratosphere–troposphere composition– climate model with interactive sulfur chemistry and aerosol microphysics, to investigate the effect of the 1991 Mount Pinatubo eruption on stratospheric aerosol properties. Satellite measurements indicate that shortly after the eruption, between 14 and 23 Tg of SO2 (7 to 11.5 Tg of sulfur) was present in the tropical stratosphere. Best estimates of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008